

Versaflex[™] OM 1040X-1

Thermoplastic Elastomer

Key Characteristics

Product Description

The Versaflex™ OM 1040X-1 is a medical compliant overmolding TPE with very good adhesion to PC or ABS-based plastics.

- · Good Surface Aesthetics
- · Rubbery Feel
- · Soft Touch
- · Very Good Bond to PC, ABS, PC/ABS

vory Good Bond to r	, 1100, 1 0/1100	
General		
Material Status	 Commercial: Active 	
Regional Availability	Africa & Middle EastAsia Pacific	Latin AmericaNorth America
Features	Good ColorabilityGood Moldability	 Good Processability Good Processing Stability Good Surface Finish
Uses	Flexible GripsMedical/Healthcare Applications	 Overmolding Soft Touch Applications Transparent or Translucen Parts
Agency Ratings	FDAISO 10993 Part 4	 ISO 10993 Part 5 USP Class VI ¹
RoHS Compliance	 RoHS Compliant 	
Appearance	 Translucent 	
Forms	 Pellets 	
Processing Method	 Injection Molding 	

Technical Properties²

	• • • • • • • • • • • • • • • • • • •		
Physical	Typical Value (English)	Typical Value (SI)	Test Method
Density / Specific Gravity	0.920	0.920	ASTM D792
Melt Mass-Flow Rate (MFR)			ASTM D1238
190°C/2.16 kg	9.0 g/10 min	9.0 g/10 min	
200°C/5.0 kg	16 g/10 min	16 g/10 min	
Molding Shrinkage - Flow	0.020 to 0.026 in/in	2.0 to 2.6 %	ASTM D955
lastomers	Typical Value (English)	Typical Value (SI)	Test Method
Tensile Stress ^{3, 4} (100% Strain, 73°F (23°C))	180 psi	1.24 MPa	ASTM D412
Tensile Stress ^{3, 4} (300% Strain, 73°F (23°C))	301 psi	2.08 MPa	ASTM D412
Tensile Strength ^{3, 4} (Break, 73°F (23°C))	504 psi	3.47 MPa	ASTM D412
Tensile Elongation ^{3, 4} (Break, 73°F (23°C))	580 %	580 %	ASTM D412
Tear Strength	100 lbf/in	17.5 kN/m	ASTM D624
Compression Set (73°F (23°C), 22 hr)	22 %	22 %	ASTM D395B
lardness	Typical Value (English)	Typical Value (SI)	Test Method
Durometer Hardness (Shore A, 10 sec)	42	42	ASTM D2240
ill Analysis	Typical Value (English)	Typical Value (SI)	Test Method
Apparent Viscosity		_	ASTM D3835
392°F (200°C), 11200 sec^-1	11.7 Pa⋅s	11.7 Pa·s	

Copyright ©, 2021 Avient Corporation. Avient makes no representations, guarantees, or warranties of any kind with respect to the Information contained in this document about its accuracy, suitability for particular applications, or the results obtained or obtainable using the Information. Some of the Information arises from laboratory work with small-scale equipment which may not provide a reliable indication of performance or properties obtained or obtainable on larger-scale equipment. Values reported as "typical" or stated without a range do not state minimum or maximum properties; consult your sales representative for property ranges and min/max specifications. Processing conditions can cause material properties to shift from the values stated in the Information. Avient makes no warranties or guarantees respecting suitability of either Avient's products or the Information for your process or end-use application. You have the responsibility to conduct full-scale end-product performance testing to determine suitability in your application, and you assume all risk and liability arising from your use of the Information and/or use or handling of any product. Avient MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED D WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, either with respect to the Information or products reflected by the Information. This data sheet shall NOT operate as permission, recommendation, or inducement to practice any patented invention without permission of the patent owner.

Rev: 2016-02-12 Page: 1 of 3

Processing Information

Injection	Typical Value (English)	Typical Value (SI)	
Suggested Max Regrind	20 %	20 %	
Rear Temperature	330 to 370 °F	166 to 188 °C	
Middle Temperature	360 to 390 °F	182 to 199 °C	
Front Temperature	370 to 400 °F	188 to 204 °C	
Nozzle Temperature	380 to 420 °F	193 to 216 °C	
Processing (Melt) Temp	370 to 410 °F	188 to 210 °C	
Mold Temperature	70 to 90 °F	21 to 32 °C	
Back Pressure	0.00 to 125 psi	0.00 to 0.862 MPa	
Screw Speed	75 to 125 rpm	75 to 125 rpm	

Injection Notes

Color concentrates with EVA, polypropylene (PP) or LDPE carrier are most suitable for coloring Versaflex™ OM 1040X-1. Typical letdown ratios are 50:1 to 25:1 - loading levels should be as low as possible to minimize the effect on adhesion. A high color match consistency can be obtained by the use of precolored compounds available from GLS. Concentrates based on PVC should not be used. The final determination of color concentrate suitability should be determined by customer trials. trials.

Purge thoroughly before and after use of this product with a low flow (0.5 - 2.5 MFR) polyethylene (PE) or polypropylene (PP).

Regrind levels up to 20% can be used with Versaflex™ OM 1040X-1 with minimal property loss, provided that the regrind is free of contamination. To minimize losses during molding, the melt temperature should remain as low as possible. The final determination of regrind effectiveness should be determined by the customer.

The Versaflex™ OM 1040X-1 has good melt stability. Maximum residence times may vary, depending on the size of the barrel. Generally, the barrel should be emptied if it is idle for periods of 8 - 10 minutes or longer.

Drying is not Required

Injection Speed: 1 to 5 in/sec

1st Stage - Boost Pressure: 200 to 600 psi 2nd Stage - Hold Pressure: 30% of Boost Hold Time (Thick Part): 4 to 10 sec Hold Time (Thin Part): 1 to 3 sec

Notes

- ¹ Please contact PolyOne GLS Thermoplastic Elastomers for a complete copy of the GLS Healthcare Policy.
- 1. The Customer must notify GLS of any FDA Class I and/or European Union Class I medical devices for each specific product and application.
- 2. The Customer shall not knowingly manufacture, use, sell or otherwise supply, directly or indirectly products or compounds made from GLS products in any of the following without prior written approval by GLS for each specific product or application:
- a. Cosmetics
- b. Drugs and other Pharmaceuticals
- c. Temporary or permanent implantation in the human body, regardless of the intended duration of implantation
- d. Class II and Class III Medical Devices as defined in 21 CFR 860.3 ("Medical Devices")
- e. Class IIa, IIb and III as defined in Directive 93/42/EEC
- ² Typical values are not to be construed as specifications.
- ³ Die C
- ⁴ 2 hr

Copyright ©, 2021 Avient Corporation. Avient makes no representations, guarantees, or warranties of any kind with respect to the Information contained in this document about its accuracy, suitability for particular applications, or the results obtained or obtainable using the Information. Some of the Information arises from laboratory work with small-scale equipment which may not provide a reliable indication of performance or properties obtained or obtainable on larger-scale equipment. Values reported as "typical" or stated without a range do not state minimum or maximum properties; consult your sales representative for property ranges and min/max specifications. Processing conditions can cause material properties to shift from the values stated in the Information. Avient makes no warranties or guarantees respecting suitability of either Avient's products or the Information for your process or end-use application. You have the responsibility to conduct full-scale end-product performance testing to determine suitability in your application, and you assume all risk and liability arising from your use of the Information and/or use or handling of any product. Avient MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED D WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, either with respect to the Information or products reflected by the Information. This data sheet shall NOT operate as permission, recommendation, or inducement to practice any patented invention without permission of the patent owner.

Rev: 2016-02-12 Page: 2 of 3

CONTACT INFORMATION

North America

Avon Lake, United States 33587 Walker Road Avon Lake, OH, United States, 44012

+1 440 930 1000

+1 844 4AVIENT

South America

Sao Paulo, Brazil Av. Francisco Nakasato, 1700 13295-000 Itupeva Sao Paulo, Brazil +55 11 4593 9200

Asia

Shanghai, China 2F, Block C 200 Jinsu Road Pudong, 201206 Shanghai, China +86 (0) 21 6028 4888

Europe

Pommerloch, Luxembourg 19 Route de Bastogne Pommerloch, Luxembourg, L-9638 +352 269 050 35

avient.com

Copyright ©, 2021 Avient Corporation. Avient makes no representations, guarantees, or warranties of any kind with respect to the Information contained in this document about its accuracy, suitability for particular applications, or the results obtained or obtainable using the information. Some of the Information arises from laboratory work with small-scale equipment which may not provide a reliable indication of performance or properties obtained or obtainable on larger-scale equipment. Values reported as "typical" or stated without a range do not state minimum or maximum properties; consult your sales representative for property ranges and min/max specifications. Processing conditions can cause material properties to shift from the values stated in the Information. Avient makes no warranties or guarantees respecting suitability of either Avient's products or the Information for your process or end-use application. You have the responsibility to conduct full-scale end-product performance testing to determine suitability in your application, and you assume all risk and liability arising from your use of the Information and/or use or handling of any product. Avient MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED FO MERCHANTIBALITY AND FITNESS FOR A PARTICULAR PURPOSE, either with respect to the Information or products reflected by the Information. This data sheet shall NOT operate as permission, recommendation, or inducement to practice any patented invention without permission of the patent owner.

Rev: 2016-02-12 Page: 3 of 3